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This Presentation Summarises 3 Papers

• Density Forecast Combinations

• Optimal Combinations of Density 
Forecasts

• Evaluating, Comparing and Combining 
Density Forecasts using the KLIC with an 
Application to the Bank of England and 
NIESR fan charts of inflation



Introduction
Density Forecast Combinations

• A number of Institutions have started to 
regularly publish density forecasts (eg the 
Bank of England's Fan charts, NIESR 
main forecast)



Chart 6.3
Current CPI inflation projection 
based on market interest rate 
expectations

Chart 6.4
CPI inflation projection in 
November based on market 
interest rate expectations

The fan charts depict the probability  of various outcomes for CPI inflation in the future.  If economic circumstances identical to today ’s were to prevail on 100 occasions, the MPC’s best collective judgement is that 
inflation over the subsequent three years would lie within the darkest central band on only  10 of those occasions.  The fan charts are constructed so that outturns of inflation are also expected to lie within each pair of the 
lighter red areas on 10 occasions.  Consequently , inflation is expected to lie somewhere within the entire fan charts on 90 out of 100 occasions.  The bands widen as the time horizon is extended, indicating the increasing 
uncertainty  about outcomes.  See the box on pages 48–49 of the May  2002 Inflation Report for a fuller description of the fan chart and what it represents.  The dotted lines are drawn at the respective two-year points.    



(a)  These charts represent a cross-section of the respective fan charts in 2007 Q1 for the market interest rate projections.  The coloured bands have a similar interpretation to those on the fan charts. For further 
details on how the fan charts are constructed see the box on pages 48–49 in the May  2002 Inflation Report.  
(b)  Probability  of inflation being within ±0.05 percentage points of any  given inflation rate, specified to one decimal place. For example, the probability  of inflation being 2.0% (between 1.95% and 2.05%) in 
the current projection is around 7%.

Chart 6.7
Current projection for CPI 
inflation in 2007 Q1(a)

based on market interest rate 
expectations

Chart 6.8
November projection for CPI 
inflation in 2007 Q1(a)

based on market interest rate 
expectations



• The point forecast literature has long 
appreciated that combination forecasts 
normally outperform any single forecast

• There are debates about why this happens
– All forecasts are wrong but in different ways
– Simple averaging may help



• A natural question then is to ask, would a 
combined density forecast also work 
better.

• This raises a number of issues
– How should we combine densities
– How should we evaluate the combined 

density
– How should we test individual densities 

against each other



Various proposals for combining densities

The early OR approaches

Consider N forecasts made by N experts of a 
variable y, if the N forecasters make density 
forecasts gi i=1,N then the linear opinion pool is

Wi sum to one



The Logarithmic opinion pool is

However 

How are the weights determined?

if all the experts agree that g is normal the 
combined density will be mixed normal and may 
be very strange



The Bayesian Approach (combining the means)

The experts densities are combined by a decision 
maker. Then Bayes Theorem is used to update the 
decision makers prior distribution

Consider a group of experts who each forecast the 
mean (m) and variance (v) of an event. The forecast 
error is,



Assume the vector of forecast errors has 
covariance matrix       which is assumed KNOWN

Then the decision maker combines the point 
forecasts as follows

And assuming normality

Σ



The combined forecast is then given by

Where     is the standard normal density function

Although this derivation is unusual the weights are 
simply those given by a regression of the forecasts 
on the outturn

φ



Extending the Bayesian approach to higher 
moments

Let               be the mean and variance of y

And let mit and vit be expert i’s forecast of the 
mean and variance, and let

we now also have an error in the forecast of the 
variance

2
tt andσµ



Then, with some normality assumptions spelt out 
in the paper

Where

vt* is the optimal combined variance

And      can be based on historical datatΩ



Combining the complete density

So far we have considered combining the mean and 
variance, but we can of course combine a complete 
set of density forecasts.

2 approaches

Indirect - combining moments

Direct – complete combination of densities



Indirect method

Assume a distribution for the combined density, 
then estimate its moments by combining the 
individual moments of the forecasters distributions.

Advantage; If every forecaster thinks the 
distribution is normal the combined distribution will 
be normal



Direct method

Linear opinion pool

Here we propose a full bayesian combination 
method



Given that h(yt) is uniform

And so

The densities are combined according to the 
reliability of their first two moments



However with this method even if all the forecasters 
agree that the distribution is normal the combined 
distribution may be far from normal.

We illustrate this below



Both forecasters agree on the mean and variance, 
just the uncertainty differs

Even in this case the combined forecast can be non 
normal



Forecasters disagree on mean and variance but 
decision maker gives them equal weight



Forecasters disagree on mean and variance decision 
maker gives them different weights



Evaluation of Density Forecasts

This is done by calculating the probability integral 
transform (PIT) following Diebold et al(1998)

Given a sequence of estimated density forecasts 
P(yt) then 

Z will be both iid and uniform(0,1) if the estimated 
density functions are correct



It is often more convenient to take the inverse 
normal cumulative density function of z (say z*) 
which should then be standard normal and test this 
for normality.

There are then many tests either for iid or normality 
which can be used, we use 10 such tests in our 
appication



Here we compare the Bank of England and the 
NIESR density forecasts of inflation and compare 
them with a combination forecast

The Bank has an asymmetric density forecast based 
on a two piece normal distribution

NIESRs forecast is a normal density

Table 1 in the paper summarises these forecasts



We also compare these results with a benchmark 
forecast which is the assumed gaussian with mean 
equal to the previous years inflation and varaince
estimated from the sample

We also estimate the tests and combination in sample 
and recursively (that is the combination is performed 
recursively rather than using the whole sample 
weights)

Ind – combination of bank/NIESR indirect method

Ind2- combination bank and benchmark indirect







Summary of results

The Bank passes most tests

NIESR does not do so well, failing many distributional 
tests and independence

Benchmark does quite well

Indirect combination of Bank and NIESR does not 
improve over the bank (NIESR gets a very low weight)

Indirect combination of Bank and Benchmark is better

Direct combination of Bank and NIESR is better

Much the same is true of out of sample tests



Examples of the direct and indirect combined 
densities



Optimal Combinations of Density 
Forecasts

• Any of the direct forecast combination methods 
require (either explicitly or implicitly) a set of 
weights to combine the densities, e.g. the linear 
opinion pool

This paper makes a new suggestion as to how 
these weights may be calculated



Traditional point forecast combinations usually 
works by the regression method which forms the 
‘optimal’ combinations so as to minimise the root 
mean square error of the combined forecast.

This is not possible for the complete density as we 
never observe the true density only a single 
realisation.

We extend the point forecast approach by analogy 
to chose the combination which gives the most 
accurate combined density



Diebold Gunther and Tay propose the idea that a 
density forecast is optimal if the model for the 
density is correctly specified. Using the PIT on a 
sequence of forecasts p(y) then if p is optimal

Z is uniform and iid

The distribution p(y) is then optimal



There are a range of tests available for testing the 
properties of z, call a suitable test s(z)

We propose the optimal combination weights

As those weights that minimise the test statistic s(z)

Here we use the Anderson and Darling test as s(z)



Example, Bank, NIESR and Benchmark (in sample 
and out of sample recursive)

w1 weight on Bank

w2 weight on NIESR

(1-w1-w2) benchmark



Optimal weights bank 0.27 niesr 0.0 benchmark 0.73



Out of sample weights

Clearly combination brings about an improvement 
here



Evaluating, Comparing and 
Combining Density Forecasts using 
the KLIC with an Application to the 
Bank of England and NIESR fan 

charts of inflation

In this paper we consider the Kullback-Leibler
information criterion (KLIC) as a natural metric to use 
when combining density forecasts



The KLIC provides a unifying framework which 
shows the equivalence of many of the existing tests 
of a density function.

It provides a formal framework for testing between 
density functions ( a generalisation of Diebold and 
Mariano)

And optimally combining them



Berkowitz LR test

By taking the inverse normal cumulative density 
function of z say z* we can then test this for zero 
mean unit variance and independence within the 
following framework

The test statistic LRB is then



The KLIC and the Berkowitz LR test

The KLIC distance measure the distance between the 
true distribution f(y) and a density forecast g(y)

This can be consistently estimated by

Which still requires us to know the truth



However

And we know the inverse normal cumulative density 
function of the PIT using the true distribution is iid
N(0,1). We then have to make some assumption 
regarding p to make the KLIC operational 

For example if we assume p is a normal distribution 
testing the departure of Z* from iid N(0,1) is 
equivalent to evaluating the KLIC



To test the null hypothesis that f=g, consider

The null hypothesis that g is correct is then

And

And

This is proportional (2T) to the Berkowitz LR test



A Test of equal accuracy of two density forecasts

If we have two forecasts g1 and g2, then 

And the null of equal accuracy is then

And the sample estimate is

And again



Combination of density forecasts using KLIC weights

Again consider bayesian model averaging

We may determine the weights from a bayesian
perspective



And we can  derive these weights from a KLIC 
perspective

Where

wi can be interpreted as the probability that forecast i 
is the most accurate forecast in the KLIC sense



2 Monte Carlo Experiments

1 tests the accuracy of the KLIC weights

2 considers the size and power of the test of equal 
accuracy 



Experiment 1

The true density is

And

2 conclusions

KLIC weights are more accurate for w1=1 or 0

KLIC weights more accurate the more different the 
two distributions are



Experiment 2

DGP

x1 and x2 are uncorrelated N(0,1)

Two incorrect density forecasts



Findings

1, the more different are the two forecasts the more 
power to the KLIC test

2, The power also depends on the accuracy of the 
individual forecasts

3, estimated KLIC weights biased towards 0.5 unless 
the best model is very bad

4, Combined forecast generally does better



Application, Bank and NIESR

Individual results

Over the full sample we reject both density forecasts

Over the later sample the Banks and NIESRR
densities are accepted

Imposing normality on the Bank seems acceptable



Testing the density forecasts

DM finds no real difference in the point forecast

Bank and NIESR densities are clearly different

Bank and NIESRr also different

Bank and Bankn almost the same



Combined KLIC weights

The KLIC weights give NIESR a relatively large 
weight



Combined forecast performance

BMA does not improve on the Banks own forecast

Equal weights does a little worse than the BMA 

Moment combinations does much better

Combining Bank and NIESRR does well



conclusion

• KLIC is a useful unifying framework to 
combine and test density forecast.

• However BMA can lead to highly non-
normal distributions which may perform 
badly


